ارزیابی و مقایسه عملکرد مدل رگرسیون خودبازگشتی میانگین متحرک انباشته فازی و شبکه عصبی فازی در پیش¬بینی رشد اقتصادی ایران

نویسندگان

منصور زراء نژاد

مسعود خداپناه

پویان کیانی

صلاح ابراهیمی

چکیده

پیش­بینی براساس مدل­های چندمتغیری اقتصادسنجی با محدودیت­هایی زیادی همراه است، بنابراین یک روش جایگزین استفاده از مدل­های تک متغیری است. اما اکثر روش­های تک­متغیری برای حصول به ­نتیجه خوب نیاز به داده­های زیادی دارند. روش­های رگرسیون فازی به­دلیل فازی در نظر گرفتن اعــداد، برای مدل­سازی و پیش­بینی معمولاً نیاز به داده­های کمتری دارند. از این­رو در این مطالعه کارایی روش رگرسیون خودبازگشتی میانگین متحرک انباشته فازی (farima) که ترکیبی از روش خودبازگشتی میانگین متحرک انباشته (arima) و رگرسیون فـازی است با روش­های arima و شبــکه عصبی فازی (anfis) در پیش­بینی رشد اقتصادی ایران مقایسه می­شود. برای تخمین مدل از داده­های دوره­ی 1338 تا 1380 استفاده شده است. سپس کارایی این مدل­ها در پیش­بینی رشد اقتصادی ایران برای دروه 1381 تا 1388 با استفاده از معیارهای rmse، mae، mape و tic ارزیابی و مقایسه شده است. مقایسه این معیارها حاکی از این است که بهترین عملکرد متعلق به روش farima است. همچنین مدل anfis عملکرد بهتری نسبت به مدل arima دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی قیمت نفت خام اوپک با استفاده از مدل خودبازگشتی میانگین متحرک انباشته فازی

عوامل زیادی بر قیمت نفت خام تأثیر می­گذارند از این رو استفاده از یک مدل چند متغیری که تمام عوامل مؤثر بر قیمت نفت را لحاظ کرده باشد کاری دشوار است. به همین دلیل، پیش­بینی این متغیر از طریق مدل­های چند متغیری بسیار دشوار است. در این حالت ممکن است استفاده از مدل­های تک متغیری روش مناسبی باشد. در این مدل­ها از حافظه تاریخی متغیر برای مدل­سازی و پیش­بینی استفاده می­شود. اما یکی از محدودیت­های مدل­ه...

متن کامل

پیش بینی جریان سالانه رودخانه با استفاده از مدل خودهمبسته تجمعی میانگین متحرک و رگرسیون فازی

رشد روزافزون جمعیت و محدودیت منابع آب سطحی در کشور، لزوم پیش‌بینی دقیق‌تر مقدار آورد رودخانه را به دلیل اهمیت در برنامه‌ریزی و مدیریت منابع آب از جمله بهره‌برداری از مخازن و طراحی سازه‌های کنترل سیلاب با استفاده از ابزارها و روش‌های نوین مدلسازی می‌طلبد. در این راستا، مدل‌های سری زمانی از دیرباز مورد توجه هیدرولوژیست‌ها بوده‌اند. هدف این تحقیق، ارزیابی کارآیی دو رهیافت کلی مدل سری زمانی و رگرسی...

متن کامل

مقایسه عملکرد شبکه‌های عصبی مصنوعی(ANN)و مدل میانگین متحرک انباشته اتورگرسیو (ARIMA) در مدلسازی و پیش‌بینی کوتاه مدت روند نرخ ارز در ایران

نرخ ­­ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژه­ای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر می­شوند. در این راستا تلاش سیاست­گذاران در کاهش این نااطمینانی از طریق پیش­بینی این متغیر باکمترین خطا بوده است. شبکه­های عصبی مصنوعی از قابلیت بالایی در مدلسازی...

متن کامل

مقایسه عملکرد شبکه های عصبی مصنوعی(ann)و مدل میانگین متحرک انباشته اتورگرسیو (arima) در مدلسازی و پیش بینی کوتاه مدت روند نرخ ارز در ایران

نرخ ­­ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژه­ای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر می­شوند. در این راستا تلاش سیاست­گذاران در کاهش این نااطمینانی از طریق پیش­بینی این متغیر باکمترین خطا بوده است. شبکه­های عصبی مصنوعی از قابلیت بالایی در مدلسازی...

متن کامل

به کارگیری مدل میانگین متحرک خودرگرسیون انباشته فازی به منظور پیش بینی نرخ ارز

در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (arima) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (anns) نیز به منظور حصول نتایج دقیق...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فصلنامه مطالعات اقتصادی کاربردی ایران (علمی - پژوهشی)

ناشر: دانشگاه بوعلی سینا

ISSN 2530-2322

دوره 2

شماره 8 2014

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023